引用本文:王雪星,何 媛,楚 杰,陈春梅,王羽丰.恶性肿瘤患者中心静脉导管相关性血栓形成的危险因素分析及预测模型构建[J].中国临床新医学,2023,16(10):1071-1076.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 188次   下载 394 本文二维码信息
码上扫一扫!
分享到: 微信 更多
恶性肿瘤患者中心静脉导管相关性血栓形成的危险因素分析及预测模型构建
王雪星,何 媛,楚 杰,陈春梅,王羽丰
650300 云南,昆明理工大学附属安宁市第一人民医院肿瘤科(王雪星),药学部(陈春梅);650000 云南,昆明医科大学第三附属医院干部医疗科(何 媛,王羽丰);641300 四川,四川大学华西医院资阳医院肿瘤科(楚 杰)
摘要:
[摘要] 目的 探讨恶性肿瘤患者中心静脉导管相关性血栓(CRT)形成的危险因素,并构建风险预测模型。方法 选择2019年1月至2022年6月于昆明医科大学第三附属医院接受中心静脉导管(CVC)置管的2 096例恶性肿瘤患者的临床资料。根据CRT形成情况分为CRT组(有CRT形成,n=178)和对照组(无CRT形成,n=1 918)。采用多因素logistic回归分析影响CRT形成的危险因素,并建立列线图模型,采用受试者工作特征(ROC)曲线、校准图形分析模型的预测效能。结果 该组病例CRT的发生率为8.50%(178/2 096)。多因素logistic回归分析结果显示,以TNM分期为Ⅰ期作参考,Ⅱ~Ⅳ期是促进CRT形成的危险因素(P<0.05);合并感染、高脂血症、血栓形成/高凝状态史、使用激素,以及较高的D-二聚体水平是促进CRT形成的危险因素(P<0.05)。ROC曲线分析结果显示,所构建的列线图模型具有较好的预测效能[AUC(95%CI)=0.856(0.824~0.889),P<0.001]。Bootstrap自助法内部验证结果显示,C指数为0.824;校准图及临床决策曲线结果提示,列线图模型具有较好的临床应用价值。结论 TNM分期、合并感染、使用激素、高脂血症、血栓形成/高凝状态史以及D-二聚体水平是恶性肿瘤患者CVC置管后发生CRT的独立影响因素。该研究建立的列线图模型有较好的预测效能,对CRT防治有一定的临床指导价值。
关键词:  恶性肿瘤  中心静脉导管  导管相关性血栓  危险因素  预测
DOI:10.3969/j.issn.1674-3806.2023.10.17
分类号:R 730.6
基金项目:
Analysis of risk factors for central venous catheter-related thrombosis in malignant tumor patients and construction of a risk prediction model
WANG Xue-xing, HE Yuan, CHU Jie, et al.
Department of Oncology, Kunming University of Science and Technology Anning First People′s Hospital, Yunnan 650300, China
Abstract:
[Abstract] Objective To investigate the risk factors for central venous catheter-related thrombosis(CRT) in malignant tumor patients and to construct a risk prediction model. Methods The clinical data of 2 096 patients with malignant tumors who received central venous catheter(CVC) catheterization at the Third Affiliated Hospital of Kunming Medical University from January 2019 to June 2022 were selected. The patients were divided into CRT group(with CRT formation, n=178) and control group(without CRT formation, n=1 918) according to their different CRT formations. Multivariate logistic regression was used to analyze the risk factors affecting CRT formation, and a nomogram model was established. Receiver operating characteristic(ROC) curve and calibration graph were used to analyze the predictive efficiency of the model. Results The incidence of CRT in the 2 096 cases in this study was 8.50%(178/2 096). The results of multivariate logistic regression analysis showed that TNM stage Ⅱ, stage Ⅲ and stage Ⅳ were the risk factors for promoting CRT formation if TNM stage Ⅰ was used as a reference(P<0.05). Complicated infections, hyperlipidemia, history of thrombosis/hypercoagulability, use of hormones, and higher D-dimer levels were risk factors for CRT formation(P<0.05). The results of ROC curve analysis showed that the constructed nomogram model had good prediction efficiency[AUC(95%CI)=0.856(0.824-0.889), P<0.001]. The results of internal verification of Bootstrap method showed that the concordance index(C-index) was 0.824. The results of calibration diagram and clinical decision curve indicated that the nomogram model had better clinical application value. Conclusion TNM stage, complicated infection, use of hormones, hyperlipidemia, history of thrombosis/hypercoagulability, and D-dimer level are independent influencing factors for CRT after CVC catheterization in patients with malignant tumors. The nomogram model constructed in this study has better prediction efficiency and has certain clinical guiding value for prevention and treatment of CRT.
Key words:  Malignant tumor  Central venous catheter(CVC)  Catheter-related thrombosis(CRT)  Risk factor  Prediction